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Flow between rotating disks. Part 1. Basic flow 
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Laser-Doppler velocity measurements were obtained in water between finite rotating 
disks, with and without throughflow, in four cases: w1 = w z  = 0 ;  wz/ol = - 1 ; 
w2/01 = 0 ; wz/wl  = 1. The equilibrium flows are unique, and at mid-radius they show 
a high degree of independence from boundary conditions in r .  With one disk rotating 
and the other stationary, this mid-radius ‘limiting flow ’ is recognized as the Batchelor 
profile of infinite-disk theory. Other profiles, predicted by this theory to coexist with 
the Batchelor profile, were neither observed experimentally nor were they calculated 
numerically by the finite-disk solutions, obtained here via a Galerkin, B-spline 
formulation. Agreement on velocity between numerical results and experimental data 
is good a t  large values of the ratio R,/Re, where R ,  = Q/Bnus is the throughflow 
Reynolds number and Re = Ri w / u  is the rotational Reynolds number. 

1. Introduction 
The problem of disk flows has occupied a central position in the field of fluid 

mechanics in recent years. Disk flows have immediate technical applications (rotating 
machinery, lubrication, viscometry, heat and mass exchangers, biomechanics, 
oceanography), but quite apart from that they have intrinsic interest. 

Relevant previous research concerned itself almost entirely with infinite-diskflows. 
The sole reason for this, one suspects, is that  the similarity transformation, available 
when the disks are infinite, reduces the number of spatial dimensions of the problem 
to one. Although it is questionable whether the reduced model approximates to the 
physical problem of flow between finite disks, the nonlinear ordinary differential 
equations that define the phenomenon have been the subject of intense analytical 
and numerical probing. I n  spite of this, the nature of the basic flow is not well 
understood and the researchers of infinite-disk flows are responsible for one of the 
long-standing controversies of fluid mechanics, which concerns the uniqueness of the 
basic motion. 

I n  an attempt to clarify this controversy and to  establish its relevance to the 
physical problem we studied flows which occur between finite rotating disks. These 
disks may be stationary, or they may rotate in either direction. A line source or sink 
of variable strength is placed in coincidence with the axis of rotation. The types of 
instabilities that may occur in this flow, and the critical conditions for their 
occurrence, are discussed in the companion paper (Szeri et al. 1983). 

A related flow, but a flow that is considerably more amenable to theoretical 

t Also at  Research and Development Center, Westinghouse Electric Co. 
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treatment than the one defined above, is due to the rotation of a single, infinite disk, 
It was first discussed by von Ktirman (1921), who postulated that the axial velocity 
is independent of the radial coordinate. The K k m a n  postulate leads to a similarity 
transformation, which was later shown by Batchelor (1951) to be applicable even 
when the fluid at infinity is rotating about the axis of the disk. Solutions have been 
obtained for various values of y ,  the ratio of angular velocity at infinity to that of 
the disk, by Rogers & Lance (1960) and others. However, for values of y in the range 
-0.160 > y > - 1.4351 it  appeared to be impossible to find solutions. It is now clear 
that a t  y = - 1.4351 the solution of the equations becomes singular. At y = -0.160 
the situation was more mysterious. Weidman & Redekopp (1975) suggested singularity 
in this neighbourhood. The mystery was cleared up by Zandebergen & Dijkstra (1977) 
and by Dijkstra (1980), who showed that branching occurs a t  y = -0.16054. They 
discuss the two branches which coincide here, and indicate that there are an infinite 
number of solutions to the problem in a small region near y = 0. Lentini & Keller 
(1980) find that at least four families of solutions exist and clearly indicate existence 
of an infinite sequence of solutions. The main difference between the solutions consists 
of an extra cell, which is built up as the solution proceeds from one branch into 
another. Near the disk and near infinity the solutions are almost indistinguishable 
from one another, particularly when higher branches are compared. Flows with y = 0, 
having zero angular velocity at infinity, exist in each family. 

Based on an examination of the governing equations, Batchelor (1951) predicted 
that a t  high Reynolds numbers a thin boundary layer will develop on each disk, with 
the main body of the fluid rotating at a constant rate, when the fluid is enclosed 
between two infinite rotating disks. This prediction was challenged by Stewartson 
(1953), who reasoned that a t  large Reynolds numbers the flow outside the boundary 
layers is purely axial. 

Lance & Rogers (1961) used numerical methods to solve the two-point boundary- 
value problem that results from the K k m a n  similarit,y transformation. The solutions 
obtained by Lance & Rogers indicate that the small-Reynolds-number trend, on 
which Stewartson had based his predictions, is misleading and that Batchelor had 
been essentially correct when describing flow a t  high Reynolds numbers. Mellor, 
Chapple & Stokes (1968) produced several classes of solutions which are referred to 
as multiple-cell solutions. They gave the one-cell solution detailed treatment, and 
obtained experimental data for it by hot-wire anemometry on 4.29 in. radius disks 
separated in air by an axial distance of Q in. Both tangential and radial velocities were 
measured, and agreement between theory and data was quite good in the case of 
tangential velocity. However, the difference between theory and data increased near 
the outer radius. Comparison of the radial velocities was less satisfactory and was 
partly explained by the fact that the induced radial velocities were at least one order 
of magnitude smaller than the circumferential velocities. Also, the hot wire was 
calibrated in uniform flow while the measurements were made in highly sheared flow. 
They reasoned further that the fluid near the stationary disk was re-ingested in the 
apparatus and was, originally, fluid near the rotating disk. Fluid near the stationary 
disk had therefore higher tangential velocity a t  larger radii, and thus differences 
between theory and data were directly related to edge effects. 

More recently Nguyen, Ribault & Florent (1975) found both Batchelor-type and 
Stewartson-type solutions numerically, with the character of the flow depending on 
what starting values were assumed for the marching integration. They state that:  
‘We cannot, of course, claim that these are the only solution, since it is impossible 
to try all possible initial combinations. ’ Holodniok, Kubicek & Hlavacek (1977) 
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identify as many as five solutions to the governing differential equations at a given 
(high) Reynolds number, two of which are of boundary-layer type. Their low- 
Reynolds-number solution is unique and the flow is of the Batchelor type, with a 
substantial portion of the fluid rotating as a rigid body. Additional solutions make 
their appearance as the Reynolds number is increased. Two of these solutions are of 
two-cell type, and there is a Stewartson-type solution exhibiting boundary layers on 
both disks. No physical interpretation is given to  the fifth profile by Holodniok et al. 
Wilson & Schryer (1978) applied uniform suction to the rotating disk in their 
numerical treatment of disk flows. They find the equilibrium flow approaching the 
Batchelor-type flow at large Reynolds numbers, but a t  the same time they raise the 
questions as to whether other solutions to the time-dependent equations with zero 
initial conditions are possible. Wilson & Schryer exhibit a rotational start-up scheme, 
which leads to an equilibrium solution in which the interior of the fluid rotates in 
the direction opposing disk rotation. Holodniok, Kubicek & Hlavacek (1981) use 
finite-difference discretization and Newton’s method to demonstrate the existence of 
several branches of solution. They give detailed treatment to the conditions 
E-l = 625 and w 1 / w 2  = 0, 1 and - 1, where E = v /s2w is the Ekman number. 

Finite disks have been studied by Szeri & Adams (1978), who used an approximation 
in which the radial variation of shear stress is neglected. The equations become 
parabolic in this approximation, and the flow is adequately described by a single 
dimensionless parameter, the Ekman number. An upstream initial condition is all 
that  is required to start the solution, which is valid up to the position of incipient 
backflow. Various inlet flows with a given Ekman number were found to have 
identical dimensionless velocity profiles a short distance downstream of the inlet 
boundary; thus even the inlet boundary condition loses its significance. This 
numerical result was verified by comparison with published experimental data. 

When the film between the two finite disks is ‘thick’, Adams & Szeri (1982) show 
that the flow is characterized by five dimensionless parameters and two sets of 
boundary conditions a t  the inlet and outlet radii, respectively. The five parameters 
are the rotational Reynolds number Re, the throughflow Reynolds number R,, the 
ratio of rotational speeds w 2 / w l ,  and two geometric ratios h = (R2/s )2  and 
A = R,/(R2 - RJ. They use the Galerkin-Kantorovich method and circular functions 
to explore the effects that each of the parameters have on the flow. Their results show 
a recirculation cell with increasing rotational Reynolds number and suggest the 
formation of multiple cells a t  high rotational Reynolds numbers. The convergence 
properties of their computational scheme, however, makes this last finding suspect. 

2. Test apparatus 
The present study is limited to a single set of rotating disks with variable spacing. 

The parameter A is fixed and the parameter h is limited to two values corresponding 
to a ‘thin-film’ spacing h = 6400, and corresponding to a ‘thick-film’ spacing 
A = 406.5 (Adams & Szeri 1982). Three angular velocity ratios w2/w1 are studied. 
These are: 02 /w1  = 0, one disk rotating and the other stationary; w 2 / 0 1  = 1 ,  
corotating disks of equal angular velocity; and w2/w1 = - 1, counter-rotating disks 
of equal but opposite angular velocity. In  addition we investigated the condition 
w1 = w 2  = 0. Two different sets of boundary conditions are examined for their effect 
on the flow. The values of Re and R, were chosen to  explore specific flow features 
in each of these flows. 

The test apparatus is designed so that the controlling parameters provide flows in 
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FIGURE 1. Test apparatus. 

the laminar regime, through transition, and into the turbulent regime. The maximum 
rotational speed of the test apparatus is chosen to provide Reynolds numbers up to 
Re = 3 x lo5, above which Schlichting (1968) has indicated turbulence. This also 
provides flows well into the region of instability for single-disk flows (Gregory, Stuart 
& Walker 1955). In  order to keep the angular velocity of the disks low, water is used 
as the test fluid and the disk outer radius is chosen to be R, = 25.4 cm. One then 
calculates rotational speed requirements of 38 rev/min for turbulence at the outer 
radius and 152 rev/min for turbulence a t  midradius. The value of the inner radius 
is set a t  R, = 1.6934 cm; thus for these experiments the parameter d = 1.0714. 

The apparatus is shown in the general assembly drawing (figure 1). It consists of 
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two 20 in. diameter disks, an upper glass disk and a lower metal disk, items 6 and 
1 respectively in figure 1 .  The disks are driven by two concentric shafts. Each shaft 
is supported on two sets of precision duplex bearings, items 2G29, each set having 
a light preload. The top set of bearings of each shaft is captivated in its respective 
housing, items 2 and 3, and the bottom set is ‘floating’, thus allowing for shaft 
thermal expansion. 

The outer housing, item 3, supports the entire assembly. The inner and outer shafts 
are rotated by V-belts and pulleys, items 18 and 19, to give corotation or counter- 
rotation relative to  each other. 

Water is introduced into the space between the two disks by a tube, item 5 ,  through 
the centre of the inner shaft. This feed tube is supported by a ball bearing a t  the top, 
item 25, and a rotating union a t  the bottom. Water is fed to and drained from the 
apparatus through the rotating union. The feed tube is O-ring sealed to the stationary 
part of the union. The inner drive shaft is direct-coupled to the rotating part of the 
union. Water is drained from the annular space between the inside diameter of the 
inner drive shaft and the outside diameter of the feed tube through the rotating union. 

The water is contained in the system by a housing, item 4, which surrcunds the 
disks and also supports and seals the upper glass disk to the system. Spacing between 
the upper glass disk and the lower metal disk is obtained by spacer blocks, item 8, 
between the housing and glass disk. 

Water is supplied to the feed tube by a static supply system, which is the 
throughflow source supply. A constant head is maintained by a make-up pump which 
supplies an overhead tank and an overflow pipe to maintain the fluid level. Test-fluid 
temperature can be controlled by coolers and heaters in the hydraulic loop. A stirrer 
in the overhead tank keeps particles in suspension in the test fluid for both laser 
velocimetry and flow-visualization tests. Flow of the test fluid is measured by 
bypassing the fluid into a strain-gauged weighing tank and by timing the flow. 

Each disk shaft is driven by a V-belt from a 3 horsepower, 230 V,  1725 rev/min, 
three-phase AC induction motor. A 3 : 1 pulley ratio decreases the speed of the driven 
shafts. Each motor is controlled by an adjustable frequency motor drive using solid 
state circuitry. The controls provide constant torque through the test-speed range 
(0-500 rev/min) and allow for motor speed reversal. The motors were modified with 
separately driven blowers mounted on an end bell to provide cooling a t  low motor 
speeds. 

Special care was taken in the selection of the materials for the disks. Several 
materials, including fused silica glass and acrylic plastic, were investigated for the 
upper disk. A borosilicate crown glass was selected because of its freedom from striae 
and because i t  contained fewer and smaller seeds (inclusions) than some of the other 
glasses. Glass was chosen instead of plastic because of its higher strength properties 
and its greater resistance to scratching. The faces of the glass disk were ground flat 
and parallel to  better than 0.005 in. over the 20 in. diameter. 

The lower disk was machined from aluminium (ASTM-B21 1, Alloy GS11A). This 
alloy has superior corrosion resistance in water and good physical properties. The 
surface was machined to a flatness of within 0.0005 in. and a surface finish better than 
16 pin. r.m.s. Although the alloy is suitable for anodizing, the surface was left in 
its polished condition to have less interference with laser backscatter light and thus 
provide more accurate data near the disk surface. 

Boundary conditions are provided by porous plastic foam with a random pore 
structure of 30 pores/in. These boundaries allow radial throughflow and impart a 
tangential velocity to  the fluid equal to that of the boundary. Thus a foam insert 
in the stationary central tube, item 5 ,  figure 1, imparts zero tangential velocity to 
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Receiving assembly 

de table for 12 in. 

FIGURE 2. Laser-system schematics. 

the fluid while an annular band of foam attached to  the lower disk, item 1 ,  figure 
1, at the outer radius imparts a tangential velocity to the fluid equal to that of the 
bottom disk. Uniform radial flow at both the inner a,nd outer radii is provided up 
to R, 4000 by a pressure drop through the foam, two orders of magnitude greater 
than the dynamic head of the fluid. 

A second boundary, referred to as the ‘natural boundary’, was also investigated. 
This is characterized by an absence of flow-straightener devices at inlet or outlet. 

I n  order to measure the velocity of water between the disks, laser-Doppler 
velocimetry is used: a single-channel dual-beam system for use in the on-axis 
backscatter mode. The laser beam can traverse the fluid gap between the disks both 
radially and axially. The radial traverse is obtained by the horizontal slide with 
12 in. travel. The axial or across-the-gap traverse is obtained by the vertical slide 
with 1 in. travel, which moves the beam expander and lens only. 

Laser-Doppler velocimetry , or LDV for short, is a non-invasive optical technique 
which allows the measurement of the instantaneous velocity of tracer particles 
(1.5 pm silicon carbide, refractive index 2.65, specific gravity 3.2) suspended in the 
flow. This measuring technique is particularly relevant to  recirculating flows. Yeh 
& Cummins (1964) were the first to  use this technique. They eliminated the need for 
extensive calibration by relating signal output to particle velocity directly from 
physical considerations. The interference-fringe model proposed by Rudd (1 969) uses 
constructive interference of plane waves to describe the probe volume as consisting 
of a set of fringe planes parallel to  the bisector of the two laser beams. 

The laser system used in these experiments is shown in figure 2. It is a TSI Model 
9100-3, with a 45’ mirror assembly for making velocity measurements in the 
horizontal plane of the disks. The system uses a 15 mW helium-neon laser operating 
in the TEM,, mode, which gives a continuous laser beam with a Gaussian intensity 
profile and a wavelength of 632.8 nm. Using l/e2 of the peak intensity to  define beam 
boundaries yields a beam diameter of 1 . 1  mm with a beam divergence of 1 .0 mrad. 

To distinguish between forward and reverse flow, an acousto-optically modulated 
Bragg cell is placed in the path of one of the laser beams. The Bragg cell shifts the 
frequency of one of the heterodyned signals relative to the other, and the photo- 
detector gives a positive difference frequency for a stationary particle in the 
measuring volume. The fringe model portrays this as a moving pattern past the 
stationary particle. Shifting the fringes also enables the measurement of small 
velocities perpendicular to the fringes, when large velocities parallel to the fringes 
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are present. For example, when measuring small induced radial velocities, the large 
tangential velocities could easily sweep a particle through the probe volume without 
crossing enough fringes to generate an analysable signal. Shifting of the fringe pattern 
eliminates this deficiency. 

Problems arise in the processing of the signal due to the fact that i t  is generated 
from random discrete bursts of light from individual particles. Hence special 
signal-processing equipment is required. Two of the types most commonly used are 
the frequency tracker and frequency counter, and the opportunity arose to  compare 
these two devices. The tracker-type signal processor was used first because of its 
alleged ability to operate on low signal-to-noise ratios. In  this instrument the Doppler 
difference frequency from the photomultiplier is mixed into the range of a phase-locked 
loop (PLL). Within its tracking range the PLL automatically adjusts the voltage of 
its voltage-controlled oscillator to yield the same frequency as the input signal. Thus 
a frequency-to-voltage conversion is effected, and an analog signal proportional to 
fluid velocity results. The main problem with this device is its requirement for a 
continuously analysable signal from the photodetector ; periods of signal dropout 
adversely affected its operation. It was found very difficult in this system t,o seed the 
flow with just enough scattering particles for a continuous signal, without having 
signal interference from multiple particles in the probe volume. 

The counter-type signal processor was then chosen because of its lower sensitivity 
to signal dropout. It measures the instantaneous velocity of individual particles by 
measuring the time between zero-crossings of a fixed number C of Doppler difference 
cycles. The time is then converted to an analog signal by a 12 bit D/A converter. 
The period of the C cycles is measured to  2 ns resolution. This allows excellent timing 
accuracy even a t  the highest anticipated velocities. For example, if the time to cross 
C = 8 fringes is measured on a particle moving a t  1.4 m/s the time is 0.715 5 0.002 ps, 
yielding a timing accuracy of 0.02 Yo. Other timing errors could result when noise on 
the signal causes false zero-crossings and miscounts of the number of cycles. This 
inaccuracy in the data is reduced by data validation circuitry which measures the 
time both for C and for $C cycles. The time intervals per cycle must agree one with 
another within a selected percentage, usually 1 Yo, or the data point is rejected. 

The analog signal from the counter is processed by a Norland 3001 Processing 
Digital Oscilloscope. The instrument performs statistical analysis on the data and 
registers the mean value and the standard deviation and has the capability of going 
from the time domain into the frequency domain. The mean value, considered to be 
a single measurement, represents 1024 to 4096 data points taken at equal time 
intervals, usually 50-100 ms in steady laminar flow. 

3. Mathematical model 

are 
For rotationally symmetric flows in polar coordinates the Navier-Stokes equations 

az ( 7) av, v a  
--+'-(rV,)+ VZ- = v V z V o - T  , 
at r ar 

av ,  av ,  av, 1 aP 
at ar az P 
--+ 6-+ Vz- = v V 2 K - - -  (0 < R, < r < R,; 0 < z < 8). i f  c)  
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The pertinent form of the equation of continuity 
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is identically satisfied by taking 

Further simplification results when the pressure is eliminated between ( 1  a )  and (1  b )  
by cross-differentiation. 

The strategy is solution of the time-dependent problem ( l ) ,  (2) by the Galerkin 
method with B-spline spatial discretization. Steady state is obtained as the stationary 
solution of the unsteady problem. If non-dimensional variables are chosen according 
to 

the system of equations ( 1 )  and (2) reduces to 

over the unit square 
R = { ( r , z ) :  0 < r < 1,0 < z < 1). 

In  this formulation w = w,, unless w1 = 0, in which case w = w 2 .  We have also made 
use of the notation 

and dropped the bar that  signified dimensionless variables in (4) and (6). The operator 
D2 is defined by 

The boundary conditions of the problem are given in non-dimensional form by 

where #(o, #(t ,0(@, i = 1,2,  are assigned functions of z.  



Flow between rotating disks. Part 1 1 1 1  

Let {A,(r) : 1 < i < N,} be the set of normalized B-splines relative to k,, T,, v,.; and 
let {Bj(z) : 1 < j < N,} be the set of normalized B-splines relative to k,, nz, v, (deBoor 
1978). Here k ,  T and v represent the order of the splines, the partition and the 
smoothness index respectively. We seek approximate solutions to (5a, b) in the form 

In the second expression we have grouped the set 70 that is associated with the 

The set 
essential boundary conditions. 

TT = {A,(r)  ~ ~ ( 2 ) :  ri, < i < fl,, a, <j < 8,}, 
which vanishes on aR,, viz that part of the boundary aR for which the boundary 
conditions are essential, will provide a basis for functions defined on the region R. 

The set 

7 0  = {A , ( r )  ~j(z), AAr) ~ 1 ( z ) ,  ANr(r) Bj(z), Ai(r)  B N Z ( z ) :  a, < i < fir, 1 < j < N,) 

when restricted to aRo provides a basis for functions defined on aR0. 
In an application of Galerkin’s method, expansions of type (8) 

N ,  N ,  

N ,  N ,  

are substituted into (5a ,  b ) .  The first of the resulting equations is multiplied through 
by elements of the test set 7@ and the second equation by elements of 7Q : 

7@ = {A,(r)Bj(z):  3 < i < N , - 2 , 3  < j  < N,-2} ,  

7D = (A , (r )Bj (z ) :  2 < i < N,-1 ,2  < j  < N z - l } .  

(10a) 

( l o b )  

This application of Galerkin’s method leads to the following two sets of ordinary 
differential equations : 



( 2  Q k < N,-  1 ; 2 Q I Q N,-  1). (11 b )  

The Galerkin coefficients @‘),poi!), ... are defined in the appendix. 
The boundary conditions at z = 0 , l  are easiest to satisfy in the strong form. The 

condition $ = RQ jRe a t  x = 1 ,  for example, can be written as 

or as 

on account of certain properties of normalized B-splines. And as the B,(r) are linearly 
independent, this leads to 

The coefficients determined in this manner are 

The boundary conditions at r = 0 , l  are satisfied in the weak form, leading the direct 
evaluation of the following coefficients : 

_ _ _ ~  
The boundary coefficients BClP),  BClP),  . . .of the above equations are defined in 

the appendix. The formulation allows for arbitrary positioning of the breakpoints and 
for splines of arbitrary order. 

Galerkin’s method permits solution of the problem not only in its unsteady form 
(1) but also in its steady form. We had good experiences with this method when 
treating the steady-state version of ( l ) ,  using circular functions as test functions 
(Adams & Szeri 1982). The present analysis employs B-spline test functions. They 
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are attractive to use here as the boundary conditions are simple. Furthermore, ( i )  
B-splines have good approximating properties, with an error term that is inversely 
proportioned to  (N- 1)4 (Hall 1968), (ii) they have local support so that the storage 
requirement of an m-dimensional Galerkin coefficient in the, say, r-direction is 
N ,  x ( k ,  - l)m and (iii) they are easy to use when utilizing the subroutine package of 
deBoor (1978). 

Thin-film approximation 

Considerable simplification of these equations can be achieved when s /R  < 1 ,  RQ 9 1 .  
The equation of continuity is satisfied by taking (Szeri & Adams 1978) 

For this case we have D2 = (RQa2/aZ2)/p2, and (5a ,  b )  reduce to 

p = r / s  kb and z are dimensionless coordinates in the radial direction and normal to 
the disks respectively. 

This model ignores radial variations of shear stress in the steady-state equations; 
the resulting system remains of second order in the axial direction, but only of first 
order in the radial coordinate. It is an initial boundary-value problem, and is 
somewhat analogous to  the full, time-dependent problem of the basic flow. We have 
implemented two different schemes for the solution of the simplified problem. 

( a )  I n  the first instance we seek representations of the stream function $(r ,  z )  and 
the angular-velocity function Q ( r ,  z )  in terms of B-splines as 

N N 

6-1 i-1 
$( r ,  Z )  = C $Ar) Bt(z) ,  Q ( r ,  Z )  = C Qi(r)  B&). (16a, b )  

I n  this formulation the boundary conditions occur as algebraic constraints ; they 
are simplest to satisfy in the strong form. This leads to 

$1 = $2 = Q, = 0, $N-I = $ N  = = 1 .  (17)  

The system of 2 N -  6 differential equations in 2N-6 dependent variables 
$ . i , 3 d i < N - 2 ; Q j , 2 < j d N - 1  isasfollows: 

18a) 

18b) 
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( b )  In  the second instance we perturb the creeping flow {$o,Qo} and seek 
representation in the form 

NQ 

Q ( r ,  x )  = Q,,(z) + Z Q,(r )  Ci(z). (19b) 
i-1 

Here the spline bases {A,}?@, {C,}?” are so constructed by judicious placing of the 
breakpoints that  each member of the two series vanishes, together with the required 
number of their derivatives, on the boundaries. The boundary conditions are then 
satisfied by the creeping-flow solution. For details the reader may consult Labbe 
(1981). 

Each of the ‘thin-film ’ formulations allows for arbitrary number and positioning 
of breakpoints and for arbitrary order of splines. 

4. Results and discussion 
The spread of data of steady-flow velocity measurements can be characterized by 

astandarddeviation ofa  = 0.05 cm/s. Approximately halfofthe spread is attributable 
to inaccuracies in electronic signal processing. The remainder is due to the fringes 
in the probe volume not being parallel and to  the presence of velocity gradients in 
thc probe volume. 

The probe reference positions (R,,O) and (R,,s) were found by observing light 
scattering from the surfaces of the disks. Owing to the fact that  the three media that 
the laser beams travel through, viz air, glass and water, differ from one another 
optically, s,, the vertical slide travel when moving t’he probe volume from disk to 
disk, is not equal to  the disk spacing s. The two distances are related by the formula 
s, = 0.7524s. Measured and calculated values of s, were found to agree with one 
another within one half of probe volume length, i.e. within 10.01 cm. Relative 
positioning of the probe volume is estimated to be accurate within 10.0018 cm 
axially and ~ 0 . 0 0 1 2  crn radially. I n  order to  gain confidence with the LDV system, 
an aerosol generator was used to atomize water. A steady flow was then established 
inside a 1.27 ern diameter Plexiglas tube and the droplet generation rate was adjusted 
until a relatively continuous series of Doppler-burst signals was observed on the 
oscilloscope. Velocity profile was then measured in the ‘fully developed ’ flow region 
of the tube, using both a tracker and a counter-type signal processor. Agreement 
between the two processors was better than + l  yo a t  all radial positions, and 
agreement between measurement and the theoretical profile was better than +_ 2 yo 
(Schneider 1982). 

Stationary disks (q = w2 = 0) 

Two sets of data of the non-dimensional radial velocity vr, where = sV, /vk$ ,  are 
shown in figures 3 and 4, both obtained between stationary disks with a disk 
separation o f s  = 0.3175 cm. We were able to  approach the disks within z / s  = 0.02, 
i.e within 0.0064 cm. The flow was a relaminarized flow in both cases (Kreith 1965). 
Flow separation at  the walls was not evident, possibly owing to a favourable pressure 
gradient caused by relaminarization. I n  fact, we were unable to show experimentally 
flow separation a t  the walls under any conditions, in contradiction to theory (Adams 
& Szeri 1982). 

Although i t  is not possible to set E-l = 0 in the ‘thin-film’ model to simulate 

- - 
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FIGURE 3. Radial velocity, stationary disks. 

stationary disks, large values of the Ekman number will approximate to this 
condition. The thin-film solutions displayed in figures 3 and 4 were obtained with 
E = 500, giving Rossby numbers Ro = 1.062 x lo3 and 1.04 x lo3 respectively. The 
figures cannot differentiate between the two thin-film schemes, the algebraic con- 
straints scheme and the perturbation scheme. Figure 4 also displays the corresponding 
stationary solution of the full equations, demonstrating that the latter and the 
thin-film models are identical under proper conditions. Agreement between theory 
and experiment is very satisfactory for flow between stationary disks. This lends 
confidence not only to the LDV measurements but also to  the theory, a t  least a t  large 
values of the Rossby number. 

One disk rotating (w2/w1 = 0) 

Figure 5 shows experimental data taken a t  r = 19.46 cm, with Q = 92.1 cm3/s and 
Nl = 2.907 rev/min. The scatter of experimental data is more pronounced than with 
both disks stationary. The flow is a radial outflow everywhere in the channel, but 
the profile is no longer symmetric to midchannel, as the centrifugal force field is 
causing the fluid to  increase its radial outward velocity near the rotating disk. The 
return flow, which is to compensate for centrifugal effects and is located near the 
stationary disk, is not sufficient to  overcome the source flow. As backflow is not 
encountered for p < 0.8159, where equality specifies the non-dimensional radial 



116 A .  Z .  Szeri, 8. J .  Schneider, F.  Labbe and H .  N .  Kaufman 

I .o 

0.9 

0.8 

0.7 

z/s 0.5 o'6i 

o Experimental data. 

Q =: 135.7 cm3/s 
r = 19.46 cm 
s = 0.3175 crn 
T =  25.8 O C  

w , = o * = o  

- Thin-film solution' 
E = 500.0 
R p  = 7790.0 
p = 0.6943 

0 nick - f i lm  solution. 
Re = 0.0 
RQ = 7790.0 
h = 6400.0 

F = 0.7493 
A =  1.2154 

V, W R $  

FIGURE 4. Radial velocity, stationary disks. 

position at which the profile was obtained, the thin-film approximation remains 
applicable. Figure 5 contains the solution of the thin-film model as well as the 
stationary solution of the full equations. Scatter of the experimental data is too large 
to permit conclusions as to the accuracy of the ' thin-film ' approximation versus the 
stationary solution of the full equations. Based on convergence studies, such as shown 
in tables 1 and 3 for radial velocity and in tables 2 and 4 for tangential velocity, we 
conclude, however, that, when it is applicable, the thin-film solution yields accurate 
results. 

The results displayed in figure 5 should not be interpreted as indicating the 
inapplicability of the thin-film model under the conditions of the experiments. 
Rather, they demonstrate an inadequacy of resolution of the stationary solution. 
In fact, this is the first indication of a problem encountered progressively as 
R, f Re+ 0. Figure 6 shows higher rotation Nl = 36.38 rev f min and a smaller 
throughflow Q = 16.51 cm3/s. The theoretical value of the non-dimensional velocity 
q, where q = &/R,w, still follows the data points, but the agreement is less 
impressive. Centrifugal effects are strong enough under these conditions to create a 
single toroidal cell. Upon decreasing the through-flow to zero, agreement between 
theory and experiment becomes even less satisfactory, as shown in figure 7. In fact 
theory predicts the formulation of a second, corotating cell. This can be seen in 
figure 8, which shows contour plots of streamlines and vorticity lines. 

We have been unable to identify a second cell experimentally, except when i t  was 
created by inlet flow lip separation, as shown in figure 9. The 'natural boundary 
conditions' of the experiments reported in this figure signify the boundary conditions 
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FIQURE 5. Radial velocity, one disk rotating. 

= 
v, 

z - 
S N = 5  N = 7  N = 9t  

0.2 0.9474 0.9476 0.9472 
0.4 1.446 1.446 1.446 
0.6 1.452 1.452 1.452 
0.8 0.9604 0.9606 0.9604 

t Logarithmic distribution of breakpoints. 

TABLE 1. Thin-film analysis, perturbation scheme ; dimensionless radial velocity 
at  p = 1.0 ( E  = 1.0, cubic splines) 

naturally occurring in the apparatus, devoid of flow straightener devices. Under these 
conditions small air bubbles, allowed to remain in the system for flow-visualization 
purposes, were observed to  move on a steady circular orbit of radius F x 0.35. 

The most probable reason for the poor convergence properties of the present 
solution in the small-RQ/Re range is the low dimension of the approximating B-spline 
subspace. We have not found it possible to go in representation much beyond 52 
equations in the set (1 1 a, b)  when calculating the time-dependent problem, due to 
excessive time requirement on the PDP-10 computer of the University of Pittsburgh. 
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z - 
S N = 5  N = 7  N = 9 t  

0.2 0.1239 0.1239 0.1239 
0.4 0.2633 0.2634 0.2634 
0.6 0.4466 0.4466 0.4466 
0.8 0.6951 0.6951 0.6951 

t Logarithmic distribution of breakpoints. 

TABLE 2. Thin-film analysis, perturbation scheme ; dimensionaless tangential velocity 
at p = 1.0 ( E  = 1.0, cubic splines) 

z 
- 
s N = 5  N = 7  N = 9  

0.2 0.9540 0.9541 0.9471 
0.4 1.436 1.446 1.446 
0.6 1.444 1.452 1.453 
0.8 0.9660 0.9592 0.9599 

TABLE 3. Thin-film analysis, algebraic constraints scheme ; dimensionless radial velocity at 
p = 1.0 ( E  = 1.0, cubic splines) 
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Praum 6. Radial velocity, one disk rotating. 
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2 
- 
S N = 5  N = 7  N = 9  

0.2 0.1213 0.1213 0.1220 
0.4 0.2575 0.2579 0.2595 
0.6 0.4401 0.4388 0.4455 
0.8 0.6865 0.6835 0.687 1 

TABLE 4. Thin-film analysis, algebraic constraints scheme ; dimensionless tangential velocity at 
p = 1.0 (E = 1.0, cubic splines) 
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FIGURE 7 .  Radial velocity, one disk rotating. 

Greater resolution is possible, however, if one is content with calculating steady state 
alone. 

Figure 10 is a study in the formation of the toroidal cell. At Q = 65.08 cm3/s the 
source flow is just large enough to neutralize the return flow of centrifugal effects a t  
F = 0.6. The local value of the Rossby number is Ro = 0.0777. For larger values of 
Ro than this, convective inertia due to source flow dominates the flow field and radial 
outflow results. For Ro < 0.0777 rotational effects dominate. Under these conditions 
the thin-film solution shows incipient backflow a t  p = 0.75, which translates to a radial 
position of r = 0.548. The corresponding value from stationary solution of the full 
equations is F = 0.6123, obtained with N ,  = N z  = 8. 
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FIGURE 8. Streamlines (a)  and vorticity lines (b )  
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FIGURE 9. Inlet flow lip separation 
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FIQURE 10. Cell development, one disk rotating. 
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FIQURE 11. Radial velocity. 

Figures 11 and 12 show non-dimensional radial and tangential velocities respect- 
ively, in an s = 1.26 cm channel a t  Re = 21 259, when porous foam boundaries are 
used. The effects of removing the foam (natural boundary conditions) is shown in 
figures 13 and 14. We note that the radial profiles of figures 11 and 13 are almost 
identical for 0.3 < p < 0.5, i.e. 'far '  away from the boundaries located at p = 0 and 
r = 1.0. The tangential velocities, on the other hand, remain similar up to p = 0.5, 
as shown in figure 15. This midradius limiting flow is identified with the Batchelor-type 
flow that is calculated for infinite disks (figure 16). When conditions are such that 
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FIGURE 12. Tangential velocity, foam boundaries. 
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FIGURE 13. Radial velocity, 

infinite disk theory predicts multiple solutions, one of the solutions is always of the 
Batchelor type (Holodniok et al. 1977, 1981) and is stable for some region 
0 < r / s  < (r/s),.  The other members of the family of multiple solutions are unstable 
a t  all positions, i.e. at all values of the ratio r / s  (Szeri et al. 1983). 

Additional experimental profiles with one disk rotating are shown in figures 17 
and 18. 

Both the LDV measurements and the calculations reported here are repeatable, 
irrespective of the starting conditions. We thus conclude that the limiting flow is 
unique and is independent of flow history. 
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FIGURE 14. Tangential velocity. 
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FIGURE 15. Comparison, centreline tangential velocities. 

Corotating disks 

We have been unable to obtain radial-velocity measurements between corotating 
disks. If there is a non-zero radial velocity field, it  is too small for detection by our 
LDV system. We are better equipped to measure the large tangential velocities. Our 
hypothesis is that, if there is significant radial flow, that flow will interact with the 
tangential motion of the fluid by transporting fluid particles into an alien environment 

5 F L M  134 
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FIGURE 16. Comparison, radial velocities. Experimental: N ,  = 2.7 rev/min, N ,  = 0, s = 1.26 cm, 
E-' = 50: 0, foam boundaries; A, natural boundaries. Theoretical (Lance & Rogers 1961): -, 
~ - 1 =  25. --- ~ - 1 ~  81. 
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FIGURE 17. Radial velocity. 

of angular momentum. If we were to plot dimensionless tangential velocity against 
non-dimensional position r a t  zero radial flow, a straight line of slope l / A  would result 
(figure 19). This figure displays experimental data of tangential velocity in 
dimensionless form, obtained for corotating disks at Re = 1.94 x lo4. We were unable 
to detect a difference between the theoretical curve for 6 = 0 and the curve of best 
fit through experimental points. 

Although numerical calculations of corotating disk flows reveal two radially spaced 
counter-rotating cells, the peak values of the non-dimensional radial velocity are of 
order 

Our conclusion is that, if the motion between corotating disks deviates from rigid 
body motion, the deviation is slight. 

only, as shown in figure 20. 
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FIGURE 18. Radial velocity. 
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FIGURE 19. Tangential velocity, corotating disks. 
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FIGURE 20. Radial velocity, corotating disks. 
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FIQURE 21. Radial velocity. 
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FIQURE 22. Tangential velocity. 

Counter-rotating disks 

Figures 21 and 22 show the radial and the tangential velocity profiles respectively, 
at Re = 10000 with natural boundary conditions. Figures 23 and 24 show the effect 
of inserting the foam boundaries. The earlier assertion, that the flow is a limiting flow 
at  midradius, is not obvious when comparing the radial profiles of figures 21 and 23. 
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FIGURE 23. Radial velocity. 
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FIQURE 24. Tangential velocity. 

The tangential profiles, however, coincide for r < 0.7. This is further demonstrated 
in figure 25. 

Comparison with infinite-disk solutions 

It was already shown by Adams & Szeri (1982) that at low Reynolds numbers the 
mid-channel flow closely resembles the infinite-disk solution of Lance & Rogers 
(1962). Figures. 26 and 27 display the stationary solutions obtained when the infinite- 
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FIGURE 26. Stationary solution, when initial condition is given by infinite-disk profile ; radial 
velocity: 0, initial condition E-' = 25 (Lance & Rogers 1961); -; stationary solution Re = 2500, 
A = 100. 

disk velocity profile of Lance & Rogers is specified as the boundary condition in (7).  
This initial condition and the stationary solution of the full equations are almost 
identical, indicating that at least a t  Re = 2500 the infinite-disk solutions satisfy the 
finite-disk partial differential equations provided that the boundary conditions have 
been set correctly. And, as was shown in figure 16, the boundary conditions do not 
have a strong effect on the flow a t  midradius. 
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FIQURE 27. Stationary solution, when initial condition is given by infinite-disk profile ; tangential 
velocity: 0, initial condition E-’ = 25 (Lance & Rogers 1961); --; stationarysolution Re = 2500, 
h = loo. 
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Appendix 
Integration over the unit square R yields the Galerkin coefficients 

Z& = Bia)(z) Bf’)(z) Bg)(z) dz, 
- s: 

1 

Z$) = I Bib) ( z )  BJc) ( z )  dz, 
0 

X $ )  Aia)(r) Ajb)(r) A g ) ( r )  dr, 

1 

*$) = 0 X g )  Aib)(r) AJe)(r) dr, 

XPL(r )  Ala)(r) Ajb)(r) Ag)(r)  dr, 

1 x@) = X-L(r)  Aib) ( r )  ( r )  dr, 
0 

where 

a < b Q c ,  a = a + b + c + 2 (if a > 0) + 1 (if b > O ) ,  K > 0, L > 0. 

The boundary coefficients in (15) have the following definitions : 

mi1) =[ q W ( z )  Bk(z)  dz-A(Zfcq)NZ+Zfcq)N,-l) 
R 

0 Re 
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